Unmanned Aerial Vehicle (UAV)-Based Vegetation Restoration Monitoring in Coal Waste Dumps after Reclamation

Author:

Ren He12,Zhao Yanling2ORCID,Xiao Wu3,Zhang Lifan2

Affiliation:

1. Academy of Eco-Civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin 300387, China

2. Institute of Land Reclamation and Ecological Rehabilitation, China University of Mining and Technology, Beijing 100083, China

3. School of Public Affairs, Zhejiang University, Hangzhou 310058, China

Abstract

Frequent spontaneous combustion activities restrict ecological restoration of coal waste dumps after reclamation. Effective monitoring of vegetation restoration is important for ensuring land reclamation success and preserving the ecological environment in mining areas. Development of unmanned aerial vehicle (UAV) technology has enabled fine-scale vegetation monitoring. In this study, we focused on Medicago sativa L. (alfalfa), a representative herbaceous vegetation type, in a coal waste dump after reclamation in Shanxi province, China. The alfalfa aboveground biomass (AGB) was used as an indicator for assessing vegetation restoration. The objective of this study was to evaluate the capacity of UAV-based fusion of RGB, multispectral, and thermal infrared information for estimating alfalfa AGB using various regression models, including random forest regression (RFR), gradient boosting decision tree (GBDT), K-nearest neighbor (KNN), support vector regression (SVR), and stacking models. The main results are as follows: (i) UAV multi-source data fusion improved alfalfa AGB estimation accuracy, although the enhancement diminished with the increasing number of sensor types. (ii) The stacking model consistently outperformed RFR, GBDT, KNN, and SVR regression models across all feature fusion combinations. It achieved high accuracy with R2 of 0.86–0.88, RMSE of 80.06–86.87 g/m2, and MAE of 60.24–62.69 g/m2. Notably, the stacking model based on only RGB imagery features mitigated the accuracy loss from limited types of features, potentially reducing equipment costs. This study demonstrated the potential of UAV in improving vegetation restoration management of coal waste dumps after reclamation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3