Urban Visual Localization of Block-Wise Monocular Images with Google Street Views

Author:

Li Zhixin1ORCID,Li Shuang1,Anderson John2,Shan Jie1ORCID

Affiliation:

1. School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA

2. Geospatial Research Lab, Corbin Field Station, Woodford, VA 22580, USA

Abstract

Urban visual localization is the process of determining the pose (position and attitude) of the imaging sensor (or platform) with the help of existing geo-referenced data. This task is critical and challenging for many applications, such as autonomous navigation, virtual and augmented reality, and robotics, due to the dynamic and complex nature of urban environments that may obstruct Global Navigation Satellite Systems (GNSS) signals. This paper proposes a block-wise matching strategy for urban visual localization by using geo-referenced Google Street View (GSV) panoramas as the database. To determine the pose of the monocular query images collected from a moving vehicle, neighboring GSVs should be found to establish the correspondence through image-wise and block-wise matching. First, each query image is semantically segmented and a template containing all permanent objects is generated. The template is then utilized in conjunction with a template matching approach to identify the corresponding patch from each GSV image within the database. Through the conversion of the query template and corresponding GSV patch into feature vectors, their image-wise similarity is computed pairwise. To ensure reliable matching, the query images are temporally grouped into query blocks, while the GSV images are spatially organized into GSV blocks. By using the previously computed image-wise similarities, we calculate a block-wise similarity for each query block with respect to every GSV block. A query block and its corresponding GSV blocks of top-ranked similarities are then input into a photogrammetric triangulation or structure from motion process to determine the pose of every image in the query block. A total of three datasets, consisting of two public ones and one newly collected on the Purdue campus, are utilized to demonstrate the performance of the proposed method. It is shown it can achieve a meter-level positioning accuracy and is robust to changes in acquisition conditions, such as image resolution, scene complexity, and the time of day.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3