Estimating and Assessing Monthly Water Level Changes of Reservoirs and Lakes in Jiangsu Province Using Sentinel-3 Radar Altimetry Data

Author:

Xu Jia1ORCID,Xia Min1,Ferreira Vagner G.1ORCID,Wang Dongmei2,Liu Chongbin1ORCID

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China

2. Jiangsu Hydraulic Research Institute, Nanjing 210017, China

Abstract

Generating accurate monthly estimations of water level fluctuations in reservoirs and lakes is crucial for supporting effective water resource management and protection. The dual-satellite configuration of Sentinel-3 makes it possible to monitor water level changes with great coverage and short time intervals. However, the potential of Sentinel-3’s Synthetic Aperture Radar Altimetry (SRAL) data to enable operational monitoring of water levels across Jiangsu Province on a monthly basis has not yet been fully explored. This study demonstrated and validated the use of Sentinel-3’s SRAL to generate accurate monthly water level estimations needed to inform water management strategies. The monthly water levels of lakes and reservoirs from 2017 to 2021 were produced using Sentinel-3 level-2 land products. Results showed that, compared with in situ data across eight studied lakes, all lakes presented R (Pearson correlation coefficient) values greater than 0.5 and Root Mean Square Error (RMSE) values less than 1 m. Notably, water level estimates for Tai Lake, Gaoyou Lake, and Luoma Lake were particularly accurate, with R above 0.9 and RMSE below 0.5 m. Furthermore, the monthly water level estimates derived from the Sentinel-3 data showed consistent seasonal trends over the multi-year study period. The annual water level of all lakes did not change significantly, except for Shijiu Lake, of which the difference between the highest and lowest water level was up to about 5 m. Our findings confirmed the water level observation ability of Sentinel-3. The accuracy of water level monitoring could be influenced by internal water level differences, terrain features, as well as the area and shape of the lake. Larger lakes with more altimetry sampling points tended to yield higher accuracy estimates of water level fluctuations. These results demonstrate that the frequent, wide-area coverage offered by this satellite platform provides valuable hydrological information, especially across remote regions lacking in situ data. Sentinel-3 has immense potential to support improved water security in data-scarce regions.

Funder

Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China

Joint Research, Development and Application Demonstration of Remote Sensing Monitoring Technology for Typical Natural Resources Features

Fundamental Research Funds for the Central Universities

Research Funds of Jiangsu Hydraulic Research Institute

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3