Impacts of Water Resources Management on Land Water Storage in the Lower Lancang River Basin: Insights from Multi-Mission Earth Observations

Author:

Zhang Xingxing1ORCID

Affiliation:

1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Climate change and heavy reservoir regulation in the lower Lancang River basin (LLRB) have caused significant impacts on terrestrial water storage (TWS) in several ways, including changes in surface water storage (SWS), soil moisture storage (SMS), and groundwater storage (GWS). Understanding these impacts is crucial for promoting comprehensive cooperation in managing and utilizing water resources within the basin. This study utilized multi-mission Earth observation (EO) datasets, i.e., gravimetry (GRACE/-FO), altimetry (Jason-2, Sentinel-3, and Cryosat-2), imagery (Sentinel-1/2), and microwave sensors (IMERG), as well as gauged meteorological, hydrological data and reanalysis products, to investigate the spatial-temporal variation of water resources in the LLRB. The study shows that the fluctuations in precipitation and the construction of reservoirs are the primary drivers of changes in the TWS anomaly (TWSA) in the region. Precipitation decreased significantly from 2010 to 2019 (−34.68 cm/yr), but the TWSA showed a significant increase (8.96 cm/yr) due to enhanced water storage capacity in the Xiaowan and Nuozhadu reservoirs. SWS and GWS were also analyzed, with SWS showing a decrease (−5.48 cm/yr) from 2010 to 2019 due to declining precipitation and increasing evaporation. GWS exhibited a steady rise (9.73 cm/yr) due to the maintenance of groundwater levels by the reservoirs. This study provides valuable insights into the potential of EO data for monitoring water resources at a regional scale.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Chinese Scholarship Council, the Special Research Assistant Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3