Pansharpening Low-Altitude Multispectral Images of Potato Plants Using a Generative Adversarial Network

Author:

Modak Sourav1,Heil Jonathan1,Stein Anthony1ORCID

Affiliation:

1. Department of Artificial Intelligence in Agricultural Engineering, University of Hohenheim, Garbenstraße 9, Stuttgart, 70599 Baden-Wuerttemberg, Germany

Abstract

Image preprocessing and fusion are commonly used for enhancing remote-sensing images, but the resulting images often lack useful spatial features. As the majority of research on image fusion has concentrated on the satellite domain, the image-fusion task for Unmanned Aerial Vehicle (UAV) images has received minimal attention. This study investigated an image-improvement strategy by integrating image preprocessing and fusion tasks for UAV images. The goal is to improve spatial details and avoid color distortion in fused images. Techniques such as image denoising, sharpening, and Contrast Limited Adaptive Histogram Equalization (CLAHE) were used in the preprocessing step. The unsharp mask algorithm was used for image sharpening. Wiener and total variation denoising methods were used for image denoising. The image-fusion process was conducted in two steps: (1) fusing the spectral bands into one multispectral image and (2) pansharpening the panchromatic and multispectral images using the PanColorGAN model. The effectiveness of the proposed approach was evaluated using quantitative and qualitative assessment techniques, including no-reference image quality assessment (NR-IQA) metrics. In this experiment, the unsharp mask algorithm noticeably improved the spatial details of the pansharpened images. No preprocessing algorithm dramatically improved the color quality of the enhanced images. The proposed fusion approach improved the images without importing unnecessary blurring and color distortion issues.

Funder

NaLamKI—Nachhaltige Landwirtschaft mittels Künstlicher Intelligenz

Federal Ministry for Economics and Climate Action

Publisher

MDPI AG

Reference132 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3