Publisher
Springer Nature Switzerland
Reference36 articles.
1. Vithlani, S.K., Dabhi, V.K.: Machine learning and deep learning in crop management-a review. In: Digital Ecosystem for Innovation in Agriculture, pp. 35–59 (2023)
2. Moreno, H., Gómez, A., Altares-López, S., et al.: Analysis of stable diffusion-derived fake weeds performance for training convolutional neural networks. Comput. Electron. Agric. 214, 108324 (2023)
3. Mumuni, A., Mumuni, F.: Data augmentation: a comprehensive survey of modern approaches. Array 16, 100258 (2022)
4. Iqbal, N., Bracke, J., Elmiger, A., et al.: Evaluating synthetic vs. real data generation for AI-based selective weeding. In: 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, pp. 125–135. Gesellschaft für Informatik e.V., Bonn (2023)
5. Kirillov, A., Mintun, E., Ravi, N., et al.: Segment anything. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3992–4003 (2023)