Determining the Relevant Scale to Analyze the Quality of Regional Groundwater Resources While Combining Groundwater Bodies, Physicochemical and Biological Databases in Southeastern France

Author:

Tiouiouine Abdessamad,Jabrane Meryem,Kacimi Ilias,Morarech MoadORCID,Bouramtane Tarik,Bahaj Tarik,Yameogo Suzanne,Rezende-Filho Ary T.,Dassonville Fabrice,Moulin Marc,Valles Vincent,Barbiero LaurentORCID

Abstract

In France, the data resulting from monitoring water intended for human consumption are integrated into a national database called SISE-Eaux, a useful and relevant tool for studying the quality of raw and distributed water. A previous study carried out on all the data from the Provence-Alpes-Côte d’Azur (PACA) region in south-eastern France (1061 sampling points, 5295 analyses and 15 parameters) revealed that the dilution of the information in a heterogeneous environment constitutes an obstacle to the analysis of ongoing processes that are sources of variability. In this article, cross-referencing this information with the compartmentalization into groundwater bodies (MESO) provides a hydrogeological constraint on the dataset that can help to better define more homogeneous subsets and improve the interpretation. The approach involves three steps: (1) A principal component analysis conducted on the whole dataset aimed at eliminating information redundancy; (2) an unsupervised grouping of groundwater bodies having similar sources of variability; (3) a principal component analysis carried out within the main groups and sub-groups identified, aiming to define and prioritize the sources of variability and the associated processes. The results supported by discriminant analysis and machine learning show that the grouping of MESO is the best-suited scale to study ongoing processes due to greater homogeneity. One of the eight main groups identified in PACA, corresponding to the accompanying aquifers of the main rivers, is analyzed by way of illustration. Water–rock interactions, redox processes and their effects on the release of metals, arsenic and fecal contamination along different pathways were specifically identified with varying impacts according to the subgroups. We discussed both the significance of the principal components and the mean values of the bacteriological parameters, which provide information on the causes and on the state of contamination, respectively. Based on the results from two different groups of MESO, some guidelines in terms of a strategy for resource quality monitoring are proposed.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3