Flexible Lead-Free Piezoelectric Ba0.94Sr0.06Sn0.09Ti0.91O3/PDMS Composite for Self-Powered Human Motion Monitoring

Author:

Deng Lin,Deng WeiliORCID,Yang Tao,Tian Guo,Jin Long,Zhang Hongrui,Lan Boling,Wang Shenglong,Ao Yong,Wu BoORCID,Yang WeiqingORCID

Abstract

Piezoelectric wearable electronics, which can sense external pressure, have attracted widespread attention. However, the enhancement of electromechanical coupling performance remains a great challenge. Here, a new solid solution of Ba1−xSrxSn0.09Ti0.91O3 (x = 0.00~0.08) is prepared to explore potential high-performance, lead-free piezoelectric ceramics. The coexistence of the rhombohedral phase, orthorhombic phase and tetragonal phase is determined in a ceramic with x = 0.06, showing enhanced electrical performance with a piezoelectric coefficient of d33~650 pC/N. Furthermore, Ba0.94Sr0.06Sn0.09Ti0.91O3 (BSST) is co-blended with PDMS to prepare flexible piezoelectric nanogenerators (PENGs) and their performance is explored. The effects of inorganic particle concentration and distribution on the piezoelectric output of the composite are systematically analyzed by experimental tests and computational simulations. As a result, the optimal VOC and ISC of the PENG (40 wt%) can reach 3.05 V and 44.5 nA, respectively, at 138.89 kPa, and the optimal sensitivity of the device is up to 21.09 mV/kPa. Due to the flexibility of the device, the prepared PENG can be attached to the surface of human skin as a sensor to monitor vital movements of the neck, fingers, elbows, spine, knees and feet of people, thus warning of dangerous behavior or incorrect posture and providing support for sports rehabilitation.

Funder

National Natural Science Foundation of China

Sichuan province Foundation for Distinguished Young Team

Basic Research Cultivation Project

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3