Stochastic Identification of Guided Wave Propagation under Ambient Temperature via Non-Stationary Time Series Models

Author:

Ahmed Shabbir,Kopsaftopoulos FotisORCID

Abstract

In the context of active-sensing guided-wave-based acousto-ultrasound structural health monitoring, environmental and operational variability poses a considerable challenge in the damage diagnosis process as they may mask the presence of damage. In this work, the stochastic nature of guided wave propagation due to the small temperature variation, naturally occurring in the ambient or environment, is rigorously investigated and modeled with the help of stochastic time-varying time series models, for the first time, with a system identification point of view. More specifically, the output-only recursive maximum likelihood time-varying auto-regressive model (RML-TAR) is employed to investigate the uncertainty in guided wave propagation by analyzing the time-varying model parameters. The steps and facets of the identification procedure are presented, and the obtained model is used for modeling the uncertainty of the time-varying model parameters that capture the underlying dynamics of the guided waves. The stochasticity inherent in the modal properties of the system, such as natural frequencies and damping ratios, is also analyzed with the help of the identified RML-TAR model. It is stressed that the narrow-band high-frequency actuation for guided wave propagation excites more than one frequency in the system. The values and the time evolution of those frequencies are analyzed, and the associated uncertainties are also investigated. In addition, a high-fidelity finite element (FE) model was established and Monte Carlo simulations on that FE model were carried out to understand the effect of small temperature perturbation on guided wave signals.

Funder

Air Force Office of Scientific Research

U.S. Army

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference72 articles.

1. An introduction to structural health monitoring

2. A Summary Review of Vibration-Based Damage Identification Methods

3. A dynamic data-driven stochastic state-awareness framework for the next generation of bio-inspired fly-by-feel aerospace vehicles;Kopsaftopoulos,2018

4. Elastic Waves in Solids I: Free and Guided Propagation;Royer,1999

5. Wave Motion in Elastic Solids;Graff,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3