Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference

Author:

Zhou HongyuORCID,Xiao Jinhui,Kang HanwenORCID,Wang Xing,Au Wesley,Chen ChaoORCID

Abstract

Robotic harvesting research has seen significant achievements in the past decade, with breakthroughs being made in machine vision, robot manipulation, autonomous navigation and mapping. However, the missing capability of obstacle handling during the grasping process has severely reduced harvest success rate and limited the overall performance of robotic harvesting. This work focuses on leaf interference caused slip detection and handling, where solutions to robotic grasping in an unstructured environment are proposed. Through analysis of the motion and force of fruit grasping under leaf interference, the connection between object slip caused by leaf interference and inadequate harvest performance is identified for the first time in the literature. A learning-based perception and manipulation method is proposed to detect slip that causes problematic grasps of objects, allowing the robot to implement timely reaction. Our results indicate that the proposed algorithm detects grasp slip with an accuracy of 94%. The proposed sensing-based manipulation demonstrated great potential in robotic fruit harvesting, and could be extended to other pick-place applications.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3