A lightweight and efficient model for grape bunch detection and biophysical anomaly assessment in complex environments based on YOLOv8s

Author:

Yang Wenji,Qiu Xiaoying

Abstract

As one of the most important economic crops, grapes have attracted considerable attention due to their high yield, rich nutritional value, and various health benefits. Identifying grape bunches is crucial for maintaining the quality and quantity of grapes, as well as managing pests and diseases. In recent years, the combination of automated equipment with object detection technology has been instrumental in achieving this. However, existing lightweight object detection algorithms often sacrifice detection precision for processing speed, which may pose obstacles in practical applications. Therefore, this thesis proposes a lightweight detection method named YOLOv8s-grape, which incorporates several effective improvement points, including modified efficient channel attention (MECA), slim-neck, new spatial pyramid pooling fast (NSPPF), dynamic upsampler (DySample), and intersection over union with minimum point distance (MPDIoU). In the proposed method, MECA and NSPPF enhance the feature extraction capability of the backbone, enabling it to better capture crucial information. Slim-neck reduces redundant features, lowers computational complexity, and effectively reuses shallow features to obtain more detailed information, further improving detection precision. DySample achieves excellent performance while maintaining lower computational costs, thus demonstrating high practicality and rapid detection capability. MPDIoU enhances detection precision through faster convergence and more precise regression results. Experimental results show that compared to other methods, this approach performs better in the grapevine bunch detection dataset and grapevine bunch condition detection dataset, with mean average precision (mAP50–95) increasing by 2.4% and 2.6% compared to YOLOv8s, respectively. Meanwhile, the computational complexity and parameters of the method are also reduced, with a decrease of 2.3 Giga floating-point operations per second and 1.5 million parameters. Therefore, it can be concluded that the proposed method, which integrates these improvements, achieves lightweight and high-precision detection, demonstrating its effectiveness in identifying grape bunches and assessing biophysical anomalies.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3