Low-Computational-Cost Hybrid FEM-Analytical Induction Machine Model for the Diagnosis of Rotor Eccentricity, Based on Sparse Identification Techniques and Trigonometric Interpolation

Author:

Terron-Santiago CarlaORCID,Martinez-Roman JavierORCID,Puche-Panadero RubenORCID,Sapena-Bano AngelORCID

Abstract

Since it is not efficient to physically study many machine failures, models of faulty induction machines (IMs) have attracted a rising interest. These models must be accurate enough to include fault effects and must be computed with relatively low resources to reproduce different fault scenarios. Moreover, they should run in real time to develop online condition-monitoring (CM) systems. Hybrid finite element method (FEM)-analytical models have been recently proposed for fault diagnosis purposes since they keep good accuracy, which is widely accepted, and they can run in real-time simulators. However, these models still require the full simulation of the FEM model to compute the parameters of the analytical model for each faulty scenario with its corresponding computing needs. To address these drawbacks (large computing power and memory resources requirements) this paper proposes sparse identification techniques in combination with the trigonometric interpolation polynomial for the computation of IM model parameters. The proposed model keeps accuracy similar to a FEM model at a much lower computational effort, which could contribute to the development and to the testing of condition-monitoring systems. This approach has been applied to develop an IM model under static eccentricity conditions, but this may extend to other fault types.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3