Transient Thermal Analysis Model of Damaged Bearing Considering Thermo-Solid Coupling Effect

Author:

Sun Yali,Zhang Chong,Zhao Xing,Liu Xiaodong,Lu Chang,Fei Jiyou

Abstract

As one of the important parameters of bearing operation, temperature is a key metric to diagnose the state of service of a bearing. However, there are still some shortcomings in the study of the temperature variation law for damaged bearings. In this paper, according to the structural characteristics of bearings, the influence law of thermal-solid coupling effect on bearing structure is considered, and a novel transient temperature analysis model of damaged bearings is established. First, a quasi-static analysis of the bearing is performed to obtain the variation laws of the key parameters of the bearing under thermal expansion. Then, the load variation law of the bearing under the condition of damage is discussed, and the heat generation and heat transfer of the damaged bearing during operation are studied. Based on the thermal grid method, a transient temperature analysis model of the damaged bearing is developed. Finally, the model is tested experimentally and the influence of the rotate speed and load on the bearing temperature variation is analyzed. The results show that the established model can effectively predict the temperature variation and thermal equilibrium temperature of damaged bearings.

Funder

National Science Foundation for Young Scientists of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3