Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions

Author:

Jang Gye-BongORCID,Cho Sung-BaeORCID

Abstract

In recent years, various deep learning models have been developed for the fault diagnosis of rotating machines. However, in practical applications related to fault diagnosis, it is difficult to immediately implement a trained model because the distribution of source data and target domain data have different distributions. Additionally, collecting failure data for various operating conditions is time consuming and expensive. In this paper, we introduce a new transformation method for the latent space between domains using the source domain and normal data of the target domain that can be easily collected. Inspired by semantic transformations in an embedded space in the field of word embedding, discrepancies between the distribution of the source and target domains are minimized by transforming the latent representation space in which fault attributes are preserved. To match the feature area and distribution, spatial attention is applied to learn the latent feature spaces, and the 1D CNN LSTM architecture is implemented to maximize the intra-class classification. The proposed model was validated for two types of rotating machines such as a dataset of rolling bearings as CWRU and a gearbox dataset of heavy machinery. Experimental results show the proposed method has higher cross-domain diagnostic accuracy than others, therefore showing reliable generalization performance in rotating machines operating under various conditions.

Funder

Doosan Heavy Industries and Construction

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3