Experimental Study on Recentering Behavior of Precompressed Polyurethane Springs

Author:

Ju Young-Hun,Mansouri Iman,Hu Jong-WanORCID

Abstract

Traditional seismic design has a limitation in that its performance is reduced by significant permanent deformation after plastic behavior under an external load. The recentering characteristics of smart materials are considered to be a means to supplement the limitations of conventional seismic design. In general, the recentering characteristics of smart materials are determined by their physical properties, whereas polyurethane springs can regulate the recentering characteristics by controlling the precompression strain. Therefore, in this study, 160 polyurethane spring specimens were fabricated with compressive stiffness, specimen size, and precompression strain as design variables. The compression behavior and precompression behavior were studied by performing cyclic loading tests on a polyurethane spring. The maximum stress and maximum strain of the polyurethane spring showed a linear relationship. Precompression and recentering forces have an almost perfect linear relationship, and the optimal level of precompression at which residual strain does not occur was derived through regression analysis. Additionally, a prediction model for predicting recentering force based on the linear relationship between precompression and recentering force was presented.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3