Seismic analysis and evaluation of several recentering braced frame structures

Author:

Hu Jong Wan1

Affiliation:

1. Department of Civil and Environmental Engineering, College of Urban Science, University of Incheon, Incheon, Republic of Korea

Abstract

After earthquakes, residual inter-story drifts greater than 0.5% in buildings may indicate a complete loss of the structure from an economic point of view. Recently, research efforts have been extended to the utilization of superelastic shape memory alloy materials for the smart control systems that can automatically reduce the plastic deformation of the structure subjected to strong seismic loading. Superelastic shape memory alloys are unique metallic alloys that undergo substantial inelastic deformations and regain their original conditions when applied loads are removed, thus alleviating the problem of permanent deformation. The frame structures make the best use of such shape memory alloy’s recentering capability if the superelastic shape memory alloy segments used to replace the steel segments are installed at the part where large deformation is likely to occur. The primary focus of this study is on the seismic response of special steel concentrically braced frames and buckling-restrained braced frames, utilizing superelastic shape memory alloy braces. In order to examine the comparative residual inter-story drift response of both braced frames, 3- and 6-story buildings were designed in accordance with current code specifications, and then nonlinear time-history analyses for two seismic hazard levels were conducted on 2D analytical frame models. The braced frames with superelastic shape memory alloy bracing systems were also compared to those with conventional steel bracing systems. Overall, analysis results show that the superelastic shape memory alloy bracing systems are more effective in decreasing residual inter-story drifts than the conventional steel bracing systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3