Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing

Author:

Shao XiaoruiORCID,Kim Chang-Soo

Abstract

Fault diagnosis (FD) plays a vital role in building a smart factory regarding system reliability improvement and cost reduction. Recent deep learning-based methods have been applied for FD and have obtained excellent performance. However, most of them require sufficient historical labeled data to train the model which is difficult and sometimes not available. Moreover, the big size model increases the difficulties for real-time FD. Therefore, this article proposed a domain adaptive and lightweight framework for FD based on a one-dimension convolutional neural network (1D-CNN). Particularly, 1D-CNN is designed with a structure of autoencoder to extract the rich, robust hidden features with less noise from source and target data. The extracted features are processed by correlation alignment (CORAL) to minimize domain shifts. Thus, the proposed method could learn robust and domain-invariance features from raw signals without any historical labeled target domain data for FD. We designed, trained, and tested the proposed method on CRWU bearing data sets. The sufficient comparative analysis confirmed its effectiveness for FD.

Funder

Pukyong National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3