Effects of Underlay on Hill-Slope Surface Runoff Process of Cupressus funebris Endl. Plantations in Southwestern China

Author:

Wu Bingchen,Qi Shi

Abstract

Clarifying the impact of underlay (i.e., the combination of near-surface vegetation and surface micro-topography) on the surface runoff process would provide a significant theoretical basis for the adjustment of vegetation patterns and the control of soil erosion on steep slopes in mountainous areas of southwestern China. In the current study, the runoff process under different rainfall characteristics was observed based on 10 natural runoff plots, and the correlation between the spatial pattern of cypress (Cupressus funebris), micro-topography, and runoff characteristic parameters was tested using the Pearson correlation coefficient method. The coupling effects of the spatial pattern of cypress and micro-topography on surface runoff also were analyzed using the Response Surface Method (RSM). The results showed that (1) under the conditions of long-duration moderate rainfall or long-duration rainstorm, topographic relief, surface roughness, runoff path density, contagion index of cypress, and stand density of cypress were the main reasons for the difference in the peak flow of each runoff plot, while under the condition of the short-duration rainstorm, the factors previously mentioned were no longer the dominant factors; (2) under the conditions of long-duration heavy rainfall or long-duration rainstorm, the common laws reflected by the response of the peak flow to the composite index of the spatial pattern of cypress and micro-topography were that (1) when the composite index of the spatial pattern of cypress (V) was below 21 and the composite index of micro-topography (U) was below 10.5, the peak flow would not be significantly affected; (2) when U > 10.5, increasing the composite index of the spatial pattern of cypress within a certain range would promote peak flow; (3) when U < 7.5 and V > 18, the increase of V value could significantly reduce the peak flow, and on this basis, adjusting the V value to 41, the reduction rate of peak flow could reach 84%.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3