Use of Thermistor Temperature Sensors for Cyber-Physical System Security

Author:

Labrado Carson,Thapliyal HimanshuORCID,Prowell Stacy,Kuruganti Teja

Abstract

The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. This has been especially highlighted by the explosive growth in the number of Internet of Things (IoT) devices. Unfortunately, the increasing prevalence of these devices has begun to draw the attention of malicious entities which exploit them for their own gain. What makes these devices especially attractive is the various resource constraints present in these devices that make it difficult to add standard security features. Therefore, one intriguing research direction is creating security solutions out of already present components such as sensors. Physically Unclonable Functions (PUFs) are one potential solution that use intrinsic variations of the device manufacturing process for provisioning security. In this work, we propose a novel weak PUF design using thermistor temperature sensors. Our design uses the differences in resistance variation between thermistors in response to temperature change. To generate a PUF that is reliable across a range of temperatures, we use a response-generation algorithm that helps mitigate the effects of temperature variation on the thermistors. We tested the performance of our proposed design across a range of environmental operating conditions. From this we were able to evaluate the reliability of the proposed PUF with respect to variations in temperature and humidity. We also evaluated the PUF’s uniqueness using Monte Carlo simulations.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference53 articles.

1. Botnets and Internet of Things Security

2. IoT security: Review, blockchain solutions, and open challenges

3. State of the IoT 2018: Number of IoT Devices Now at 7B—Market Acceleratinghttps://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3