One Factor at a Time Analysis to Modify Potting Technique for Manufacturing of Bubble-Free High-Voltage Polyester Insulated Automotive Coils

Author:

Nawaz Ahmad,Ahmad Ishaq,Akram WaseemORCID,Islam Bilal,Pimenov Danil YurievichORCID,Giasin KhaledORCID,Aamir MuhammadORCID

Abstract

The current study focuses on minimising the bubbles in polyester-insulated ignition coils, which were produced with a defect level of ~21–25% or 210–250 coils per 1000 batch size by using the potting method. This high-level rejection makes a substantial financial impact by increasing waste material, manufacturing, and after-sales costs. Hence, to control the bubbled problem without using expensive and maintenance-heavy techniques, the process parameters in the potting method were alternated and investigated using one factor at a time, which played a vital role in the formation/reduction of bubbles in the ignition coil insulation. Process parameters, including pre/process heating, the appropriate MEKP/cobalt naphthenate ratio, the pouring amount/increments, and the stirring speeds, reduced the bubble formation per lot from 205 ± 30 to 146 ± 25, 108 ± 21, 61 ± 17, and 10 ± 2 per 1000 lot accordingly. In addition, a comparative study was conducted in terms of performance and life cycle endurance, using Japanese and Indian standards. Furthermore, an after-sale warranty claim also supports the proposed changes in the potting technique. This modification may reduce the after-sales rejection within two years to approximately ~85%. This modification in the potting technique is extremely cost-effective in comparison to expensive processes, i.e., vacuum-pressure impregnation and vacuum impregnation, which require extensive labour and maintenance.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference37 articles.

1. Automotive Ignition Transfer Efficiency;Rohwein,2002

2. The Magneto Ignition System;Schwaner,1992

3. A high energy ignition system for EGR combustion engine;Ogata;Trans. Automot. Soc. Jpn.,2016

4. Dual coil ignition for gasoline EGR engines

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3