Two-Scale Topology Optimization with Isotropic and Orthotropic Microstructures

Author:

Rastegarzadeh SinaORCID,Wang JunORCID,Huang JidaORCID

Abstract

Advances in additive manufacturing enable the fabrication of complex structures with intricate geometric details, which bring opportunities for high-resolution structure design and transform the potential of functional product development. However, the increasingly delicate designs bring computational challenges for structural optimization paradigms, such as topology optimization (TO), since the design dimensionality increases with the resolutions. Two-scale TO paves an avenue for high-resolution structural design to alleviate this challenge. This paper investigates the efficacy of introducing function-based microstructures into the two-scale TO. Both isotropic and orthotropic microstructure are considered to develop this TO framework. Implicit functions are exploited to model the two classes of cellular materials, including triply periodic minimal surfaces (TPMS) and Fourier series-based functions (FSF). The elasticity tensor of microstructures is computed with numerical homogenization. Then, a two-scale TO paradigm is formulated, and a gradient-based algorithm is proposed to simultaneously optimize the micro-scale structures and macro-scale material properties. Several engineering benchmark cases are tested with the proposed method, and experimental results reveal that using proposed microstructures leads to, at most, a 36% decrease in the compliance of optimal structures. The proposed framework provides achievable directionality and broader design flexibility for high-resolution product development.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3