Revamping Optimization of a Pressure Piping System Using Artificial Neural Networks

Author:

Caponetto RiccardoORCID,Fargione Giovanna,Giudice FabioORCID,Schiavo Marco

Abstract

The paper proposes a new methodology for revamping design and optimization of a process piping system. Starting from ASME B31.3 Process Piping prescriptions for stress analysis, a nonlinear model is built to express the relationship between stress distribution generated by expansion and sustained loads (pressure, weight) and the geometry and routing of the pipeline, focusing on geometric parameters of expansion loops. The number of design variables affecting stress distribution over the pipe, together with the constraints to be respected, would make it hard to formulate an optimization procedure based on deterministic methods. This problem is overcome by applying a Feed Forward Neural Network, backpropagation trained, which makes it possible to interpolate a non-linear and multidimensional relation over a domain enclosed within the boundaries of a training set. Prediction of code stresses is obtained through the fitting of an artificial neural network for each examined loadcases. Network parameters are tuned offline, starting from a set of data obtained by finite element numerical simulation. As a result, an optimal geometry for expansion loops is found, allowing to revamp pipe routing by halving loops number and keeping code stress within the allowable limits.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference19 articles.

1. A Stochastic Model for Piping Failure Frequency Analysis Using OPDE Data

2. Gas Pipeline Incidents: 11th Report (Period 1970–2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3