A Ferroelectric Memristor-Based Transient Chaotic Neural Network for Solving Combinatorial Optimization Problems

Author:

Lin ZhuoshengORCID,Fan Zhen

Abstract

A transient chaotic neural network (TCNN) is particularly useful for solving combinatorial optimization problems, and its hardware implementation based on memristors has attracted great attention recently. Although previously used filamentary memristors could provide the desired nonlinearity for implementing the annealing function of a TCNN, the controllability of filamentary switching still remains relatively poor, thus limiting the performance of a memristor-based TCNN. Here, we propose to use ferroelectric memristor to implement the annealing function of a TCNN. In the ferroelectric memristor, the conductance can be tuned by switching the lattice non-centrosymmetry-induced polarization, which is a nonlinear switching mechanism with high controllability. We first establish a ferroelectric memristor model based on a ferroelectric tunnel junction (FTJ), which exhibits the polarization-modulated tunnel conductance and the nucleation-limited-switching (NLS) behavior. Then, the conductance of the ferroelectric memristor is used as the self-feedback connection weight that can be dynamically adjusted. Based on this, a ferroelectric memristor-based transient chaotic neural network (FM-TCNN) is further constructed and applied to solve the traveling salesman problem (TSP). In 1000 runs for 10-city TSP, the FM-TCNN achieves a shorter average path distance, a 32.8% faster convergence speed, and a 2.44% higher global optimal rate than the TCNN.

Funder

National Natural Science Foundation of China

Science and Technology Projects

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3