Modeling a Reverse Logistics Supply Chain for End-of-Life Vehicle Recycling Risk Management: A Fuzzy Risk Analysis Approach

Author:

Omosa Geoffrey Barongo1ORCID,Numfor Solange Ayuni2,Kosacka-Olejnik Monika3ORCID

Affiliation:

1. School of Engineering and Architecture, Meru University of Science and Technology, Meru 972-60200, Kenya

2. Change Agent Inc., 111-0053 PF Asakusabashi Building 5F, 1-19-10 Asakusabashi, Taito-ku, Tokyo 111-0053, Japan

3. Faculty of Engineering Management, Poznan University of Technology, Jacka Rychlewskiego 2 Street, 60-965 Poznan, Poland

Abstract

The automotive industry is one of the largest consumers of natural resources, and End-of-Life Vehicles (ELVs) form bulky wastes when they reach the end of their useful life, hence environmental concerns. Efficiency in recycling ELVs is therefore becoming a major concern to address the number of ELVs collected and recycled to minimize environmental impacts. This paper seeks to describe several activities of a closed-loop reverse logistics supply chain for the collection and recycling of ELVs and to identify the related potential risks involved. This study further investigated the potential risks for managing the efficient recycling of ELVs by modeling and viewing the end-of-life vehicle (ELV) recycling system as a reverse logistics supply chain. ELV recycling steps and processes, including collection and transportation, as well as the laws and technologies, were analyzed for risk factor identification and analysis. The major aim of this research is to perform a unified hierarchical risk analysis to estimate the degree of risk preference to efficiently manage the ELV supply chain. This study also proposes a risk assessment procedure using fuzzy knowledge representation theory to support ELV risk analysis. As a result, the identified key risks were ranked in terms of their preference for occurrence in a reverse supply chain of ELV products and mapped into five risk zones, Very Low, Low, Medium-Low, Moderate, Serious, and Critical, for ease of visualization. Hence, with a step-by-step implementation of the presented solution, ELV recycling organizations will see benefits in terms of an improvement in their activities and thus reduced costs that may occur due to uncertainties in their overall ELV business.

Funder

Poznan University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3