Photocatalytic Removal of Cr(VI) by Thiourea Modified Sodium Alginate/Biochar Composite Gel

Author:

Deng Aijun,Wu Shaojie,Hao Junjie,Pan Hongbo,Li Mingyang,Gao XiangpengORCID

Abstract

Heavy metal pollution is an important problem in current water treatments. Traditional methods for treating chromium-containing wastewater have limitations such as having complicated processes and causing secondary pollution. Therefore, seeking efficient and fast processing methods is an important research topic at present. Photocatalysis is an efficient method to remove Cr(VI) from aqueous solutions; however, conventional photocatalysts suffer from a low metal absorption capacity, high investment cost, and slow desorption of trivalent chromium from the catalyst surface. In this study, a novel composite gel was synthesized by chemically modifying thiourea onto sodium alginate, which was then mixed with biochar. The composite gel (T-BSA) can effectively remove 99.98% of Cr(VI) in aqueous solution through synergistic adsorption and photocatalytic reduction under UV light irradiation. The removal mechanism of Cr(VI) was analyzed by FT-IR, FESEM, UV-DRS and XPS. The results show that under acidic conditions, the amino group introduced by chemical modification can be protonated to adsorb Cr(VI) through electrostatic interaction. In addition, the biochar as a functional material has a large specific surface area and pore structure, which can provide active sites for the adsorption of Cr(VI), while the photo-reduced Cr(III) is released into the solution through electrostatic repulsion, regenerating the adsorption sites, thereby improving the removal performance of Cr(VI). Biochar significantly intensifies the Cr(VI) removal performance by providing a porous structure and transferring electrons during photoreduction. This study demonstrates that polysaccharide-derived materials can serve as efficient photocatalysts for wastewater treatment.

Funder

National Natural Science Foundation of China

University Natural Science Research Project of Anhui Province

Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3