Adsorption of Safranin O Dye by Alginate/Pomegranate Peels Beads: Kinetic, Isotherm and Thermodynamic Studies

Author:

Abbaz Amina1ORCID,Arris Sihem1,Viscusi Gianluca2ORCID,Ayat Asma1,Aissaoui Halima1,Boumezough Yasser1

Affiliation:

1. Environmental Process Engineering Laboratory (LIPE), Faculty of Process Engineering, Salah Boubnider University Constantine 3, Constantine 25000, Algeria

2. Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy

Abstract

Water pollution is regarded as a dangerous problem that needs to be resolved right away. This is largely due to the positive correlation between the increase in global population and waste production, especially food waste. Hydrogel beads based on sodium alginate (Alg) and pomegranate fruit peels (PP) were developed for the adsorption of Safranin O dye (SO) in aqueous solutions. The obtained Alg−PP beads were widely characterized. The effects of the contact time (0–180 min), initial concentration (10–300 mg/L), initial pH (2–10), adsorbent dosage (1–40 g/L) and the temperature (293–333 K) were investigated through batch tests. The data proved that the adsorption kinetics of SO reached equilibrium within 30 min and up to 180 min. The dye adsorption is concentration dependent while a slight effect of pH was observed. The adsorption data of SO onto synthesized beads follow the pseudo second-order model. The experimental data fitted very well to Langmuir model with correlation factor of 0.92 which demonstrated the favourable nature of adsorption. The maximum adsorption capacity of Alg−PP could reach 30.769 mg/g at 293 K. Calculation of Gibbs free energy and enthalpy indicated that adsorption of SO onto Alg−PP is spontaneous (negative ΔG) and endothermic (ΔH = 9.30 kJ/mol). Analysis of diffusion and mass transport phenomena were presented. The removal efficiency was found to be 88% at the first cycle and decreased to 71% at the end of the seventh cycle. The reported results revealed that the Alg−PP beads could be used as a novel natural adsorbent for the removal of high concentrated solutions of Safranin O which is a cationic dye from liquid affluents and as future perspective, it can be used to remove various pollutants from wastewater.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3