Immortalized Canine Adipose-Derived Mesenchymal Stem Cells as a Novel Candidate Cell Source for Mesenchymal Stem Cell Therapy

Author:

Yasumura Yuyo1ORCID,Teshima Takahiro12ORCID,Nagashima Tomokazu3,Takano Takashi4,Michishita Masaki23,Taira Yoshiaki1,Suzuki Ryohei1ORCID,Matsumoto Hirotaka1

Affiliation:

1. Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan

2. Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan

3. Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan

4. Laboratory of Veterinary Public Health, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan

Abstract

Mesenchymal stem cells are expected to be a cell source for stem cell therapy of various diseases in veterinary medicine. However, donor-dependent cell heterogenicity has been a cause of inconsistent therapeutic efficiency. Therefore, we established immortalized cells from canine adipose tissue-derived mesenchymal stem cells (ADSCs) to minimize cellular heterogeneity by reducing the number of donors, evaluated their properties, and compared them to the primary cells with RNA-sequencing. Immortalized canine ADSCs were established by transduction with combinations of the R24C mutation of human cyclin-dependent kinase 4 (CDKR24C), canine cyclin D1, and canine TERT. The ADSCs transduced with CDK4R24C, cyclin D1, and TERT (ADSC-K4DT) or with CDK4R24C and cyclin D1 (ADSC-K4D) showed a dramatic increase in proliferation (population doubling level >100) without cellular senescence compared to the primary ADSCs. The cell surface markers, except for CD90 of the ADSC-K4DT and ADSC-K4D cells, were similar to those of the primary ADSCs. The ADSC-K4DT and ADSC-K4D cells maintained their trilineage differentiation capacity and chromosome condition, and did not have a tumorigenic development. The ability to inhibit lymphocyte proliferation by the ADSC-K4D cells was enhanced compared with the primary ADSCs and ADSC-K4DT cells. The pathway analysis based on RNA-sequencing revealed changes in the pathways mainly related to the cell cycle and telomerase. The ADSC-K4DT and ADSC-K4D cells had decreased CD90 expression, but there were no obvious defects associated with the decreased CD90 expression in this study. Our results suggest that ADSC-K4DT and ADSC-K4D cells are a potential novel cell source for mesenchymal stem cell therapy.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3