Impact of Adipose Tissue Depot Harvesting Site on the Multilineage Induction Capacity of Male Rat Adipose-Derived Mesenchymal Stem Cells: An In Vitro Study

Author:

El-Husseiny Hussein M.12ORCID,Kaneda Masahiro3ORCID,Mady Eman A.4ORCID,Yoshida Tadashi5ORCID,Doghish Ahmed S.67ORCID,Tanaka Ryou1ORCID

Affiliation:

1. Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan

2. Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt

3. Laboratory of Veterinary Anatomy, Division of Animal Life Sciences, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan

4. Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt

5. Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan

6. Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt

7. Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt

Abstract

Recently, substantial attention has been paid toward adipose-derived mesenchymal stem cells (AdMSCs) as a potential therapy in tissue engineering and regenerative medicine applications. Rat AdMSCs (r-AdMSCs) are frequently utilized. However, the influence of the adipose depot site on the multilineage differentiation potential of the r-AdMSCs is still ambiguous. Hence, the main objective of this study was to explore the influence of the adipose tissue harvesting location on the ability of r-AdMSCs to express the stem-cell-related markers and pluripotency genes, as well as their differentiation capacity, for the first time. Herein, we have isolated r-AdMSCs from the inguinal, epididymal, peri-renal, and back subcutaneous fats. Cells were compared in terms of their phenotype, immunophenotype, and expression of pluripotency genes using RT-PCR. Additionally, we investigated their potential for multilineage (adipogenic, osteogenic, and chondrogenic) induction using special stains confirmed by the expression of the related genes using RT-qPCR. All cells could positively express stem cell marker CD 90 and CD 105 with no significant in-between differences. However, they did not express the hematopoietic markers as CD 34 and CD 45. All cells could be induced successfully. However, epididymal and inguinal cells presented the highest capacity for adipogenic and osteogenic differentiation (21.36-fold and 11.63-fold for OPN, 29.69-fold and 26.68-fold for BMP2, and 37.67-fold and 22.35-fold for BSP, respectively, in epididymal and inguinal cells (p < 0.0001)). On the contrary, the subcutaneous cells exhibited a superior potential for chondrogenesis over the other sites (8.9-fold for CHM1 and 5.93-fold for ACAN, (p < 0.0001)). In conclusion, the adipose tissue harvesting site could influence the differentiation capacity of the isolated AdMSCs. To enhance the results of their employment in various regenerative cell-based therapies, it is thus vital to take the collection site selection into consideration.

Funder

Egypt-Japan Education Partnership call 4 (EJEP-4) from the Ministry of Higher Education of the Arab Republic of Egypt

WISE Program: Doctoral Program for World-Leading Innovative and Smart Education of Tokyo University of Agriculture and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3