Mathematical Optimisation of Magnetic Nanoparticle Diffusion in the Brain White Matter

Author:

Yuan Tian1ORCID,Yang Yi2ORCID,Zhan Wenbo2ORCID,Dini Daniele1ORCID

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

2. School of Engineering, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract

Magnetic nanoparticles (MNPs) are a promising drug delivery system to treat brain diseases, as the particle transport trajectory can be manipulated by an external magnetic field. However, due to the complex microstructure of brain tissues, particularly the arrangement of nerve fibres in the white matter (WM), how to achieve desired drug distribution patterns, e.g., uniform distribution, is largely unknown. In this study, by adopting a mathematical model capable of capturing the diffusion trajectories of MNPs, we conducted a pilot study to investigate the effects of key parameters in the MNP delivery on the particle diffusion behaviours in the brain WM microstructures. The results show that (i) a uniform distribution of MNPs can be achieved in anisotropic tissues by adjusting the particle size and magnetic field; (ii) particle size plays a key role in determining MNPs’ diffusion behaviours. The magnitude of MNP equivalent diffusivity is reversely correlated to the particle size. The MNPs with a dimension greater than 90 nm cannot reach a uniform distribution in the brain WM even in an external magnitude field; (iii) axon tortuosity may lead to transversely anisotropic MNP transport in the brain WM; however, this effect can be mitigated by applying an external magnetic field perpendicular to the local axon track. This study not only advances understanding to answer the question of how to optimise MNP delivery, but also demonstrates the potential of mathematical modelling to help achieve desired drug distributions in biological tissues with a complex microstructure.

Funder

European Unions Horizon 2020 research and innovation programme

EPSRC Established Career Fellowship

Children with Cancer UK

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference47 articles.

1. Changes in Retinal Glial Cells with Age and during Development of Age-Related Macular Degeneration;Telegina;Biochemistry,2018

2. BBB pathophysiology–independent delivery of siRNA in traumatic brain injury;Li;Sci. Adv.,2021

3. Nanoparticle technology for treatment of Parkinson’s disease: The role of surface phenomena in reaching the brain;Drug Discov. Today,2015

4. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases;Saraiva;J. Control. Release,2016

5. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 1);Honary;Trop. J. Pharm. Res.,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3