Endothelial Cell Markers Are Inferior to Vascular Smooth Muscle Cells Markers in Staining Vasa Vasorum and Are Non-Specific for Distinct Endothelial Cell Lineages in Clinical Samples

Author:

Markova VictoriaORCID,Bogdanov Leo,Velikanova ElenaORCID,Kanonykina Anastasia,Frolov Alexey,Shishkova DariaORCID,Lazebnaya Anastasia,Kutikhin AntonORCID

Abstract

Current techniques for the detection of vasa vasorum (VV) in vascular pathology include staining for endothelial cell (EC) markers such as CD31 or VE-cadherin. However, this approach does not permit an objective assessment of vascular geometry upon vasospasm and the clinical relevance of endothelial specification markers found in developmental biology studies remains unclear. Here, we performed a combined immunostaining of rat abdominal aorta (rAA) and human saphenous vein (hSV) for various EC or vascular smooth muscle cell (VSMC) markers and found that the latter (e.g., alpha smooth muscle actin (α-SMA) or smooth muscle myosin heavy chain (SM-MHC)) ensure a several-fold higher signal-to-noise ratio irrespective of the primary antibody origin, fluorophore, or VV type (arterioles, venules, or capillaries). Further, α-SMA or SM-MHC staining allowed unbiased evaluation of the VV area under vasospasm. Screening of the molecular markers of endothelial heterogeneity (mechanosensitive transcription factors KLF2 and KLF4, arterial transcription factors HES1, HEY1, and ERG, venous transcription factor NR2F2, and venous/lymphatic markers PROX1, LYVE1, VEGFR3, and NRP2) have not revealed specific markers of any lineage in hSV (although KLF2 and PROX1 were restricted to venous endothelium in rAA), suggesting the need in high-throughput searches for the clinically relevant signatures of arterial, venous, lymphatic, or capillary differentiation.

Funder

Siberian Branch of the Russian Academy of Sciences

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3