Biomimetic Vascular Grafts with Circumferentially and Axially Oriented Microporous Structures for Native Blood Vessel Regeneration

Author:

Ding Zhaozhao12,Wang Yuanyuan12,Chen Fangfang3,Hu Xiao12,Cheng Weinan4,Lu Qiang1ORCID,Kaplan David L.5

Affiliation:

1. State Key Laboratory of Radiation Medicine and Radiation Protection Institutes for Translational Medicine Soochow University Suzhou 215123 P. R. China

2. National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China

3. Department of General Surgery The First Affiliated Hospital of Bengbu Medical College Bengbu 233004 P. R. China

4. Department of Sports Medicine Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital Shanghai 200233 P. R. China

5. Department of Biomedical Engineering Tufts University Medford OR 02155 USA

Abstract

AbstractPorous grafts facilitate constructive remodeling of blood vessels. Incorporating multiple biomimetic cues to porous grafts can promote vascular regeneration. However, the fabrication of such medical devices remains challenging. Here, beta‐sheet rich silk nanofibers (BSN) are added to poly(vinyl alcohol) (PVA) solution and aggregated under a cylindric electric field to form circumferentially and axially oriented tubular structures, to simulate the endothelial and media layers of blood vessels. PVA in the aligned tubes is then crystallized through repeat freezing–thawing process to offer mechanical performances. Through tuning the ratio of BSN and PVA, the composite tubes with dual anisotropic microstructures exhibit better mechanical properties than pure PVA vascular grafts. Significantly improved cell adhesion, spreading, proliferation, and alignment are achieved. Both endothelial and smooth muscle cells show improved biological activity on the grafts due to the regulatory roles of the aligned structures. In vivo studies reveal the formation of endothelial layers within four weeks of implantation, ensuring long‐term patency. The endothelial and smooth muscle double layers are regenerated after eight months postimplantation, forming hierarchical microstructures and compositions similar to native vessels. The porous composite grafts with multiple aligned structures guide vascular remodeling to regenerate blood vessels, demonstrating potential for clinical translation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3