Study on New Dental Materials Containing Quinoxaline-Based Photoinitiators in Terms of Exothermicity of the Photopolymerization Process

Author:

Pyszka Ilona1,Skowroński Łukasz2ORCID,Jędrzejewska Beata1ORCID

Affiliation:

1. Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland

2. Institute of Mathematics and Physics, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego St. 7, 85-796 Bydgoszcz, Poland

Abstract

Modern dentistry places great demands on the dental composites used for filling tooth cavities or treating cavitated tooth decay. The aim of the work was to modify the properties of composites by changing the initiators and co-initiators. This was achieved by using initiators based on a quinoxaline skeleton and co-initiators that are derivatives of acetic acid, which is an advantage of these photoinitiating systems due to the elimination of aromatic amines from the photocurable composition. The composites also differed in dental fillers. The effect of the compounds on the exothermicity of the photopolymerization process, the surface morphology of the obtained materials and the maximum compressive strength were determined. The photoinitiating capacity of the two-component systems was tested by the microcalorimetric method using the multifunctional monomer TMPTA, typical for dental filler compositions. The new photoinitiating systems show particularly good efficiency of free radical polymerization initiation, which occurs by the photoinduced intermolecular electron transfer (PET) mechanism. The comparison of the tested systems with camphorquinone, a photoinitiator traditionally used in dentistry, made it possible to observe a decrease in temperature during photopolymerization without a significant decrease in the polymerization rate or increase in photocuring time, as well as a better homogeneity of the surface of the obtained polymeric materials. This indicates that dye–acetic acid derivative systems may be useful in dental applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3