Melatonin Delays Postharvest Senescence through Suppressing the Inhibition of BrERF2/BrERF109 on Flavonoid Biosynthesis in Flowering Chinese Cabbage

Author:

Yue Lingqi1,Kang Yunyan1ORCID,Zhong Min1,Kang Dengjin1,Zhao Puyan1,Chai Xirong1,Yang Xian1ORCID

Affiliation:

1. College of Horticulture, South China Agricultural University, Guangzhou 510642, China

Abstract

Flowering Chinese cabbage is prone to withering, yellowing and deterioration after harvest. Melatonin plays a remarkable role in delaying leaf senescence and increasing flavonoid biosynthesis. However, the underlying molecular mechanisms of melatonin procrastinating postharvest senescence by regulating flavonoid biosynthesis remain largely unknown. In this study, melatonin could promote flavonoid accumulation and delay the postharvest senescence of flowering Chinese cabbage. Surprisingly, we observed that BrFLS1 and BrFLS3.2 were core contributors in flavonoid biosynthesis, and BrERF2 and BrERF109 were crucial ethylene response factors (ERFs) through the virus-induced gene silencing (VIGS) technique, which is involved in regulating the postharvest senescence under melatonin treatment. Furthermore, yeast one-hybrid (Y1H), dual luciferase (LUC), and β-glucuronidase (GUS) tissue staining experiments demonstrated that BrERF2/BrERF109 negatively regulated the transcripts of BrFLS1 and BrFLS3.2 by directly binding to their promoters, respectively. Silencing BrERF2/BrERF109 significantly upregulated the transcripts of BrFLS1 and BrFLS3.2, promoting flavonoid accumulation, and postponing the leaf senescence. Our results provided a new insight into the molecular regulatory network of melatonin delaying leaf senescence and initially ascertained that melatonin promoted flavonoid accumulation by suppressing the inhibition of BrERF2/BrERF109 on the transcripts of BrFLS1 and BrFLS3.2, which led to delaying the leaf senescence of postharvest flowering Chinese cabbage.

Funder

2022 Seed Industry Revitalization Project of Rural Revitalization Strategy Special Fund of Guangdong province

Guangzhou basic and applied basic research foundation

Guangdong Basic and Applied Basic Research Foundation

Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference54 articles.

1. Plant leaf senescence and death-regulation by multiple layers of control and implications for aging in general;Woo;J. Cell Sci.,2013

2. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis;Kim;Proc. Natl. Acad. Sci. USA,2006

3. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis;Jing;J. Exp. Bot.,2005

4. ERF4 affects fruit firmness through TPL4 by reducing ethylene production;Hu;Plant J.,2020

5. 1-methylcyclopropene counteracts ethylene inhibition of anthocyanin accumulation in peach skin after harvest;Zhang;Postharvest Biol. Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3