Characterization of the WRKY Gene Family Related to Anthocyanin Biosynthesis and the Regulation Mechanism under Drought Stress and Methyl Jasmonate Treatment in Lycoris radiata

Author:

Wang Ning12ORCID,Song Guowei12,Zhang Fengjiao12,Shu Xiaochun12,Cheng Guanghao12,Zhuang Weibing12,Wang Tao12,Li Yuhang12,Wang Zhong12

Affiliation:

1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China

2. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China

Abstract

Lycoris radiata, belonging to the Amaryllidaceae family, is a well-known Chinese traditional medicinal plant and susceptible to many stresses. WRKY proteins are one of the largest families of transcription factors (TFs) in plants and play significant functions in regulating physiological metabolisms and abiotic stress responses. The WRKY TF family has been identified and investigated in many medicinal plants, but its members and functions are not identified in L. radiata. In this study, a total of 31 L. radiata WRKY (LrWRKY) genes were identified based on the transcriptome-sequencing data. Next, the LrWRKYs were divided into three major clades (Group I–III) based on the WRKY domains. A motif analysis showed the members within same group shared a similar motif component, indicating a conservational function. Furthermore, subcellular localization analysis exhibited that most LrWRKYs were localized in the nucleus. The expression pattern of the LrWRKY genes differed across tissues and might be important for Lycoris growth and flower development. There were large differences among the LrWRKYs based on the transcriptional levels under drought stress and MeJA treatments. Moreover, a total of 18 anthocyanin components were characterized using an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis and pelargonidin-3-O-glucoside-5-O-arabinoside as well as cyanidin-3-O-sambubioside were identified as the major anthocyanin aglycones responsible for the coloration of the red petals in L. radiata. We further established a gene-to-metabolite correlation network and identified LrWRKY3 and LrWRKY27 significant association with the accumulation of pelargonidin-3-O-glucoside-5-O-arabinoside in the Lycoris red petals. These results provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in anthocyanin biosynthesis and in response to drought stress and MeJA treatment.

Funder

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources

Jiangsu Agricultural Science and Technology Innovation Fund

Jiangsu Provincial Crop Germplasm Resource Bank for Conservation

Projects of Independently Development of Jiangsu Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3