Towards Construction of a Novel Nanometer-Resolution MeV-STEM for Imaging Thick Frozen Biological Samples

Author:

Yang Xi1,Wang Liguo2,Maxson Jared3,Bartnik Adam Christopher3,Kaemingk Michael3ORCID,Wan Weishi4,Cultrera Luca5,Wu Lijun6,Smaluk Victor1ORCID,Shaftan Timur1,McSweeney Sean2,Jing Chunguang7ORCID,Kostin Roman7,Zhu Yimei6ORCID

Affiliation:

1. National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA

2. Laboratory for BioMolecular Structure, Brookhaven National Laboratory, Upton, NY 11973, USA

3. Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA

4. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

5. Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973, USA

6. Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA

7. Euclid Techlabs LLC, 367 Remington Blvd., Bolingbrook, IL 60440, USA

Abstract

Driven by life-science applications, a mega-electron-volt Scanning Transmission Electron Microscope (MeV-STEM) has been proposed here to image thick frozen biological samples as a conventional Transmission Electron Microscope (TEM) may not be suitable to image samples thicker than 300–500 nm and various volume electron microscopy (EM) techniques either suffering from low resolution, or low speed. The high penetration of inelastic scattering signals of MeV electrons could make the MeV-STEM an appropriate microscope for biological samples as thick as 10 μm or more with a nanoscale resolution, considering the effect of electron energy, beam broadening, and low-dose limit on resolution. The best resolution is inversely related to the sample thickness and changes from 6 nm to 24 nm when the sample thickness increases from 1 μm to 10 μm. To achieve such a resolution in STEM, the imaging electrons must be focused on the specimen with a nm size and an mrad semi-convergence angle. This requires an electron beam emittance of a few picometers, which is ~1000 times smaller than the presently achieved nm emittance, in conjunction with less than 10−4 energy spread and 1 nA current. We numerically simulated two different approaches that are potentially applicable to build a compact MeV-STEM instrument: (1) DC (Direct Current) gun, aperture, superconducting radio-frequency (SRF) cavities, and STEM column; (2) SRF gun, aperture, SRF cavities, and STEM column. Beam dynamic simulations show promising results, which meet the needs of an MeV-STEM, a few-picometer emittance, less than 10−4 energy spread, and 0.1–1 nA current from both options. Also, we designed a compact STEM column based on permanent quadrupole quintuplet, not only to demagnify the beam size from 1 μm at the source point to 2 nm at the specimen but also to provide the freedom of changing the magnifications at the specimen and a scanning system to raster the electron beam across the sample with a step size of 2 nm and the repetition rate of 1 MHz. This makes it possible to build a compact MeV-STEM and use it to study thick, large-volume samples in cell biology.

Funder

U.S. Department of Energy

SBIR

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3