Author:
Fafard Simon,Masson Denis P.
Abstract
The high-efficiency capabilities of multijunction laser power converters are demonstrated for high-power applications with an optical input of around 1470 nm. The InP-based photovoltaic power converting III-V semiconductor devices are designed here, with 10 lattice-matched subcells (PT10-InGaAs/InP), using thin InGaAs absorbing layers connected by transparent tunnel junctions. The results confirm that such long-wavelength power converter devices are capable of producing electrical output voltages greater than 4–5 V. The characteristics are compatible with common electronics requirements, and the optical input is well suited for propagation over long distances through fiber-based optical links. Conversion efficiencies of ~49% are measured at electrical outputs exceeding 7 W for an input wavelength of 1466 nm at 21 °C. The Power Converter Performance Chart has been updated with these PT10-InGaAs/InP results.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献