Fundamental Studies on Electron Dynamics in Exact Paraxial Beams with Angular Momentum

Author:

Pastor IgnacioORCID,Álvarez-Estrada Ramón F.ORCID,Roso LuisORCID,Castejón FranciscoORCID

Abstract

Classical electromagnetic radiation with orbital angular momentum (OAM), described by nonvanishing vector and scalar potentials (namely, Lorentz gauge) and under Lorentz condition, is considered. They are employed to describe paraxial laser beams, thereby including non-vanishing longitudinal components of electric and magnetic fields. The relevance of the latter on electron dynamics is investigated in the reported numerical experiments. The lowest corrections to the paraxial approximation appear to have a negligeable influence in the regimes treated here. Incoherent Thomson scattering (TS) from a sample of free electrons moving subject to the paraxial fields is studied and investigated as a beam diagnosis tool. Numerical computations elucidate the nature and conditions for the so called trapped solutions (electron motions bounded in the transverse plane of the laser and drifting along the propagation direction) in long quasi-steady laser beams. The influence of laser parameters, in particular, the laser beam size and the non-vanishing longitudinal field components, essential for the paraxial approximation to hold, are studied. When the initial conditions of the electrons are sufficiently close to the origin, a simplified model Hamiltonian to the full relativistic one is introduced. It yields results comparing quite well quantitatively with the observed amplitudes, phase relationships and frequencies of oscillation of trapped solutions (at least for wide laser beam sizes). Genuine pulsed paraxial fields with OAM and their features, modeling true ultra-short pulses are also studied for two cases, one of wide laser beam spot (100 μm) and other with narrow beam size of 6.4 μm. To this regard, the asymptotic distribution of the kinetic energy of the electrons as a function of their initial position over the transverse section is analyzed. The relative importance of the transverse structure effects and the role of longitudinal fields is addressed. By including the full paraxial fields, the asymptotic distribution of kinetic energy of an electron population distributed across the laser beam section, has a nontrivial and unexpected rotational symmetry along the optical propagation axis.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3