Petawatt and exawatt class lasers worldwide

Author:

Danson Colin N.,Haefner Constantin,Bromage Jake,Butcher Thomas,Chanteloup Jean-Christophe F.,Chowdhury Enam A.,Galvanauskas Almantas,Gizzi Leonida A.,Hein Joachim,Hillier David I.,Hopps Nicholas W.,Kato Yoshiaki,Khazanov Efim A.,Kodama Ryosuke,Korn Georg,Li Ruxin,Li Yutong,Limpert Jens,Ma Jingui,Nam Chang Hee,Neely David,Papadopoulos Dimitrios,Penman Rory R.,Qian Liejia,Rocca Jorge J.,Shaykin Andrey A.,Siders Craig W.,Spindloe Christopher,Szatmári Sándor,Trines Raoul M. G. M.,Zhu Jianqiang,Zhu Ping,Zuegel Jonathan D.

Abstract

In the 2015 review paper ‘Petawatt Class Lasers Worldwide’ a comprehensive overview of the current status of high-power facilities of ${>}200~\text{TW}$ was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multi-disciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development.

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3