Surface Lattice Resonances in THz Metamaterials

Author:

Tan ,Plum ,Singh

Abstract

Diffraction of light in periodic structures is observed in a variety of systems including atoms, solid state crystals, plasmonic structures, metamaterials, and photonic crystals. In metamaterials, lattice diffraction appears across microwave to optical frequencies due to collective Rayleigh scattering of periodically arranged structures. Light waves diffracted by these periodic structures can be trapped along the metamaterial surface resulting in the excitation of surface lattice resonances, which are mediated by the structural eigenmodes of the metamaterial cavity. This has brought about fascinating opportunities such as lattice-induced transparency, strong nearfield confinement, and resonant field enhancement and line-narrowing of metamaterial structural resonances through lowering of radiative losses. In this review, we describe the mechanisms and implications of metamaterial-engineered surface lattice resonances and lattice-enhanced field confinement in terahertz metamaterials. These universal properties of surface lattice resonances in metamaterials have significant implications for the design of resonant metamaterials, including ultrasensitive sensors, lasers, and slow-light devices across the electromagnetic spectrum.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3