Abstract
A new method is proposed to perform Mueller matrix polarimetry using a Full Poincaré beam (i.e., a non-uniformly polarized beam presenting all polarization states across its section) as a parallel polarization state generator and a charge-coupled device (CCD) camera as a detector of the polarization state analyzer. In this way, the polarization change is measured for all possible input states simultaneously. To obtain the Mueller matrix of the sample, the overdetermined system of equations that relates the input and output states of polarization is solved by means of the Moore–Penrose pseudo-inverse. Preliminary numerical simulations are performed to identify and exhaustively analyze the main sources of error. In order to test the method, experimental measurements are presented for several known samples, showing an excellent agreement between the experimentally obtained Mueller matrices and the theoretically expected ones.
Funder
Ministry of Economy, Industry and Competitiveness
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献