Dynamic Mueller matrix polarimetry using generalized measurements

Author:

McWilliam AmyORCID,Al Khafaji Mustafa A.1,Svensson Sphinx J.,Pádua Sebastião2ORCID,Franke-Arnold SonjaORCID

Affiliation:

1. Fraunhofer CAP

2. Universidade Federal de Minas Gerais

Abstract

Mueller matrices provide a complete description of a medium’s response to excitation by polarized light, and their characterization is important across a broad range of applications from ellipsometry in material science to polarimetry in biochemistry, medicine and astronomy. Here we introduce single-shot Mueller matrix polarimetry based on generalized measurements performed with a Poincaré beam. We determine the Mueller matrix of a homogeneous medium with unknown optical activity by detecting its optical response to a Poincaré beam, which across its profile contains all polarization states, and analyze the resulting polarization pattern in terms of four generalized measurements, which are implemented as a path-displaced Sagnac interferometer. We illustrate the working of our Mueller matrix polarimetry on the example of tilted and rotated wave plates and find excellent agreement with predictions as well as alternative Stokes measurements. After initial calibration, the alignment of the device stays stable for up to 8 hours, promising suitability for the dynamic characterization of Mueller matrices that change in time. Unlike traditional rotating waveplate polarimetry, our method allows the acquisition of a sample’s dynamic Mueller matrix. We expect that our feasibility study could be developed into a practical and versatile tool for the real-time analysis of optical activity changes, with applications in biomedical and biochemical research and industrial monitoring.

Funder

Engineering and Physical Sciences Research Council

QuantIC

Scottish Universities Physics Alliance

Instituto Nacional de Ciência e Tecnologia da Criosfera

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3