Single-Pixel Hyperspectral Imaging via an Untrained Convolutional Neural Network

Author:

Wang Chen-Hui1,Li Hong-Ze1,Bie Shu-Hang1,Lv Rui-Bing1,Chen Xi-Hao1

Affiliation:

1. Key Laboratory of Optoelectronic Devices and Detection Technology, School of Physics, Liaoning University, Shenyang 110036, China

Abstract

Single-pixel hyperspectral imaging (HSI) has received a lot of attention in recent years due to its advantages of high sensitivity, wide spectral ranges, low cost, and small sizes. In this article, we perform a single-pixel HSI experiment based on an untrained convolutional neural network (CNN) at an ultralow sampling rate, where the high-quality retrieved images of the target objects can be achieved by every visible wavelength of a light source from 432 nm to 680 nm. Specifically, we integrate the imaging physical model of single-pixel HSI into a randomly initialized CNN, which allows the images to be reconstructed by relying solely on the interaction between the imaging physical process and the neural network without pre-training the neural network.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference62 articles.

1. Spectral imaging: Principles and applications;Garini;Cytom. Part A J. Int. Soc. Anal. Cytol.,2006

2. A review of hyperspectral remote sensing and its application in vegetation and water resource studies;Govender;Water SA,2007

3. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review;Adam;Wetl. Ecol. Manag.,2010

4. Hyperspectral imaging applied to medical diagnoses and food safety;Carrasco;Proceedings of the Geo-Spatial and Temporal Image and Data Exploitation III,2003

5. Multispectral imaging of burn wounds: A new clinical instrument for evaluating burn depth;Afromowitz;IEEE Trans. Biomed. Eng.,1988

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3