Reconstructing Depth Images for Time-of-Flight Cameras Based on Second-Order Correlation Functions

Author:

Wang Tian-Long1,Ao Lin2,Zheng Jie2ORCID,Sun Zhi-Bin13

Affiliation:

1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. Northeastern University, Shenyang 110819, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Depth cameras are closely related to our daily lives and have been widely used in fields such as machine vision, autonomous driving, and virtual reality. Despite their diverse applications, depth cameras still encounter challenges like multi-path interference and mixed pixels. Compared to traditional sensors, depth cameras have lower resolution and a lower signal-to-noise ratio. Moreover, when used in environments with scattering media, object information scatters multiple times, making it difficult for time-of-flight (ToF) cameras to obtain effective object data. To tackle these issues, we propose a solution that combines ToF cameras with second-order correlation transform theory. In this article, we explore the utilization of ToF camera depth information within a computational correlated imaging system under ambient light conditions. We integrate compressed sensing and non-training neural networks with ToF technology to reconstruct depth images from a series of measurements at a low sampling rate. The research indicates that by leveraging the depth data collected by the camera, we can recover negative depth images. We analyzed and addressed the reasons behind the generation of negative depth images. Additionally, under undersampling conditions, the use of reconstruction algorithms results in a higher peak signal-to-noise ratio compared to images obtained from the original camera. The results demonstrate that the introduced second-order correlation transformation can effectively reduce noise originating from the ToF camera itself and direct ambient light, thereby enabling the use of ToF cameras in complex environments such as scattering media.

Funder

National key research and development program

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3