Exploring the Effect of Optical Beams on Hybrid VLC/RF Transmission Characteristics

Author:

Ding Jupeng1ORCID,I Chih-Lin2,Zhao Kai3,Liu Shuxian3

Affiliation:

1. Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

2. China Mobile Research Institute, Beijing 100053, China

3. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

Abstract

The hybrid visible light communication/radio frequency (VLC/RF) transmission system could offer consistent coverage and high throughput, which are inherited from the VLC and RF link components separately. However, almost all current hybrid VLC/RF schemes are limited in scenarios adopting light emitting diodes (LED) sources with basic Lambertian optical beams, and fail to investigate the scenarios using sources with distinct non-Lambertian optical beams. For exploring this effect of optical beams on hybrid VLC/RF transmission performance, typical symmetric and non-symmetric optical beams are introduced to constitute representative non-Lambertian VLC/RF links. Moreover, the heterogeneous optical beams-based hybrid VLC/RF transmission scheme is proposed and estimated under a hard switching mechanism. Numerical results show that, compared with an approximate 234.39 Mbps maximum throughput of the conventional hybrid Lambertian VLC/RF configuration, the counterparts of the hybrid non-Lambertian VLC/RF configuration with the Rebel and NSPW optical beams are 203.39 Mbps and 279.34 Mbps, respectively. Furthermore, the proposed heterogeneous beams-based hybrid scheme is applied via Lambertian and non-Lambertian candidate beams, with the average throughput increased to 186.45 Mbps from the original approximate 174.14 Mbps of the conventional Lambertian hybrid VLC/RF configuration.

Funder

National Natural Science Foundation of China

Tianshan Cedar Project of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3