Coverage Performance of Non-Lambertian Underwater Wireless Optical Communications for 6G Internet of Things

Author:

Ding Jupeng12ORCID,I Chih-Lin3,Wang Jintao4,Song Jian4

Affiliation:

1. Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, School of Computer Science and Technology (School of Cyberspace Security), Xinjiang University, Urumqi 830046, China

2. School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China

3. China Mobile Research Institute, Beijing 100053, China

4. Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

In medium- and short-range underwater application scenarios, thanks to the superior performance in transmission bandwidth, link latency, and security, underwater wireless optical communication (UWOC) is growing to be a promising complement to the mature underwater acoustic communication technique. In order to extend the future 6G Internet of Things (IOT) to various challenging and valuable underwater scenarios, the underwater spatial coverage and transmission performance has been actively discussed in typical seawater environments. However, almost all current works focus on underwater scenarios including light-emitting diode (LED) transmitters with well-known Lambertian optical beams and fail to characterize the scenarios adopting LED transmitters with distinctive non-Lambertian beam patterns. For addressing this limitation, in this article, the coverage performance of non-Lambertian UWOC for 6G is analyzed and illustrated. Furthermore, the switchable optical beam configuration scheme is proposed and estimated for UWOC. Numerical results illustrate that, compared with about 15.42 dB signal-to-noise ratio (SNR) fluctuation amplitude for UWOC with baseline Lambertian optical beam configuration, the corresponding SNR fluctuation amplitudes of UWOC based with two typical non-Lambertian optical beams are 8.71 dB and 24.60 dB. Furthermore, once the receiver depth is increased to 6.0 m, the SNR fluctuation amplitude for the above three UWOC coverage with distinct beam configuration could be reduced to 5.61 dB, 1.58 dB, and 10.33 dB, respectively.

Funder

National Natural Science Foundation of China

Tianshan Cedar Project of Xinjiang Uygur Autonomous Region

High-level Talents Introduction Project in Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3