Abstract
A coherent random-modulated continuous-wave (RMCW) LiDAR transmits a lightwave modulated by a pseudo-random binary sequence (PRBS). The lightwave backscattered from targets is received and used to reconstruct the PRBS. Then, the time-of-flight is extracted by correlating the reconstructed PRBS and the original PRBS. We propose a coherent RMCW LiDAR based on phase-coded subcarrier modulation, in which the impacts of internal reflection and optical Doppler frequency shift (DFS) are mitigated. A continuous lightwave is amplitude-modulated by an RF signal which is phase-coded with a PRBS. Coherent detection is used in the receiver. A beat signal that consisted of a low-frequency signal and a high-frequency signal is obtained by a single balanced photodetector (BPD). The optical DFS can be directly extracted from the low-frequency signal. It is used to compensate for the frequency offset of PRBS, which is extracted from the high-frequency signal. In addition, the background noise caused by internal reflection is suppressed by averaging over successive measurement spots. In this paper, the performance of a coherent RMCW LiDAR is firstly analyzed by numeric simulations and demonstration experiments. Then, line-scanning measurements for moving targets are implemented to demonstrate the 3D imaging capability of the proposed coherent RMCW LiDAR.
Funder
National Natural Science Foundation of China
Shanghai Academy of Spaceflight Technology Innovation Fund
Subject
Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献