Phase-modulated continuous-wave coherent ranging method for optical phased array lidar

Author:

Mingshi Zhang1,Yubing WangORCID,Lanxuan Zhang2,Qian Hu3,Shuhua Zhao1,Lei Liang,Yongyi Chen,Li Qin,Junfeng Song24,Lijun Wang2

Affiliation:

1. University of Chinese Academy of Sciences

2. Peng Cheng Laboratory

3. Changchun University of Technology

4. Jilin University

Abstract

Light detection and ranging (lidar) is widely accepted as an indispensable sensor for autonomous vehicles. There are two fundamental challenges in a lidar system: optical beam steering technique and ranging method. Optical phased array (OPA) is considered as one of the most promising beam steering schemes due to its solid state, compact size, and high reliability. As for ranging method, time-of-flight and frequency-modulate continuous-wave (FMCW) are commonly utilized in numerous research. However, they are impractical to commercial OPA lidar due to either requiring excessive optical power or the poor stability, high complexity, and high insertion loss of the FMCW source. As a result, the development of OPA lidars is significantly hindered by the lack of a feasible ranging method. In this paper, we present a phase-modulated continuous-wave (PhMCW) ranging method with excellent ranging accuracy and precision. Ranging error as low as 0.1 cm and precision on the order of 3.5 cm are achieved. In addition, theoretical and experimental study on simultaneous velocity measurement is carried out and velocity error as low as 0.15 cm/s is obtained. Finally, we develop a proof-of-concept OPA-PhMCW lidar and obtain a point cloud with excellent fidelity. Our work paves a novel approach to solid-state, cost-effective and high-performance OPA lidars.

Funder

Jilin Scientific and Technological Development Program

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wide range linearization calibration method for DFB Laser in FMCW LiDAR;Optics and Lasers in Engineering;2024-03

2. Performance analysis of dual-frequency coherent lidar for rough target detection in turbulent atmosphere;AOPC 2023: Laser Technology and Applications; and Optoelectronic Devices and Integration;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3