Author:
Song Tingting,Lim Christina,Nirmalathas Ampalavanapillai,Wang Ke
Abstract
A signal space diversity (SSD) scheme was proposed to be incorporated with spatial modulation (SM) in an intensity-modulation/direct-detection-based multiple-input-single-output (MISO) indoor optical wireless communication (OWC) system to improve bit-error-rate (BER) performance and system throughput. SSD was realized via signal constellation rotation and diversity interleaving using different channel gains to improve the BER. With SM incorporated, the MISO-OWC system throughput increased. Theoretical BER expressions of the SSD scheme were established for the first time by investigating the distance of neighboring constellation symbols upon maximum-likelihood detection. Such BER expressions were further verified by numerical results. The results showed that, except for the slightly-lower-accuracy performance brought by comparable distances of neighboring constellation symbols in cases of low signal-to-noise ratios, these BER expressions were accurate in most scenarios. Moreover, theoretical investigations of channel gain distributions were performed at different signal constellation rotation angles to show the capability of the SSD scheme to improve the BER. The results showed that a significantly improved BER by two orders of magnitude could be achieved using a reasonably high channel-gain ratio and a larger constellation rotation angle. The SSD-SM scheme provides a promising option to achieve transmitter diversity with an enhanced throughput in high-speed indoor OWC systems.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Reference23 articles.
1. Cisco Annual Internet Report (2018–2023) White Paperhttps://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
2. Indoor Optical Wireless Systems: Technology, Trends, and Applications
3. Fiber to the Premiseshttps://www.corning.com/fiber-to-the-premise/worldwide/en/home.html
4. Wireless infrared communications
5. Emerging Optical Wireless Communications-Advances and Challenges
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献