Optical Wireless Communications Using Signal Space Diversity with Spatial Modulation

Author:

Song Tingting,Lim Christina,Nirmalathas Ampalavanapillai,Wang Ke

Abstract

A signal space diversity (SSD) scheme was proposed to be incorporated with spatial modulation (SM) in an intensity-modulation/direct-detection-based multiple-input-single-output (MISO) indoor optical wireless communication (OWC) system to improve bit-error-rate (BER) performance and system throughput. SSD was realized via signal constellation rotation and diversity interleaving using different channel gains to improve the BER. With SM incorporated, the MISO-OWC system throughput increased. Theoretical BER expressions of the SSD scheme were established for the first time by investigating the distance of neighboring constellation symbols upon maximum-likelihood detection. Such BER expressions were further verified by numerical results. The results showed that, except for the slightly-lower-accuracy performance brought by comparable distances of neighboring constellation symbols in cases of low signal-to-noise ratios, these BER expressions were accurate in most scenarios. Moreover, theoretical investigations of channel gain distributions were performed at different signal constellation rotation angles to show the capability of the SSD scheme to improve the BER. The results showed that a significantly improved BER by two orders of magnitude could be achieved using a reasonably high channel-gain ratio and a larger constellation rotation angle. The SSD-SM scheme provides a promising option to achieve transmitter diversity with an enhanced throughput in high-speed indoor OWC systems.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference23 articles.

1. Cisco Annual Internet Report (2018–2023) White Paperhttps://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

2. Indoor Optical Wireless Systems: Technology, Trends, and Applications

3. Fiber to the Premiseshttps://www.corning.com/fiber-to-the-premise/worldwide/en/home.html

4. Wireless infrared communications

5. Emerging Optical Wireless Communications-Advances and Challenges

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3