Abstract
Due to the influence of the atmospheric environment and pointing errors, the performance of free space optical communication is greatly limited. In this paper, we propose a parallel multi-hop hybrid free space optical (FSO)/radio frequency (RF) system to improve the system performance. The FSO sub-link and RF sub-link are modeled by Gamma–Gamma turbulence with pointing errors and Nakagami-m distributions, respectively. Based on the selective combination scheme, the probability density function (PDF) and cumulative distribution function (CDF) of the output signal-to-noise ratio (SNR) of the hybrid FSO/RF one-hop or direct link are obtained. Then, the PDF and CDF of the output SNR of the parallel multi-hop hybrid system are derived with the decoded forward (DF) protocol considered. Finally, the expressions of the average bit error rate (ABER) and outage probability are derived for the parallel multi-hop hybrid system, the hybrid FSO/RF direct link, and the FSO-only direct link. The results show that the parallel multi-hop hybrid system can effectively mitigate the negative impact of atmospheric turbulence and pointing errors and can significantly improve the system performance.
Funder
National Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献