Performance analysis of the FSO communication system with random jamming over a composite Málaga turbulence fading channel

Author:

Wang Jingyu12,Gao Dingshan1ORCID,Li Juan2,Chen Dongliang1,Ding Deqiang2,Dong Yuzhao1

Affiliation:

1. Wuhan National Laboratory for Optoelectronics

2. National University of Defense Technology

Abstract

The performance analysis of a free space optical (FSO) communication system in the presence of random jamming is presented over a Málaga (M) distributed channel model with pointing errors and atmospheric attenuation. Firstly, the probability density function expressions of the transmission channel, signal-to-jamming ratio, and signal-to-noise ratio are derived. Then, considering the probability of the jammer and Gaussian white noise, the closed-form expressions for the ergodic channel capacity, outage probability, and average bit error rate are derived. Moreover, asymptotic expressions for the aforementioned performance metrics are also derived to ascertain the diversity gain of the system. Extensive Monte Carlo simulations are performed to demonstrate the credibility of this theoretical analysis. Results indicate that the adverse impact of random jamming is higher than that of Gaussian noise for the FSO communication system. Besides, this observation highlights the pulsating nature of the jamming effect, showcasing that within high signal-to-jamming ratio regions, a low probability jammer exerts the most significant impact on the FSO system.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3